3.1.65 \(\int \frac {x^2}{\sqrt {a+c x^2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=344 \[ -\frac {\left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\left (2 d f-e \left (\sqrt {e^2-4 d f}+e\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f} \]

________________________________________________________________________________________

Rubi [A]  time = 0.54, antiderivative size = 344, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1081, 217, 206, 1034, 725} \begin {gather*} -\frac {\left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\left (2 d f-e \left (\sqrt {e^2-4 d f}+e\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*f) - ((e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e
- Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqr
t[2]*f*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) - ((2*d*f - e*(e + Sqrt[e^2 -
4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4
*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*f*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 1081

Int[((A_.) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), x_Symbol] :> Dist[
C/c, Int[1/Sqrt[d + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C - b*C*x)/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x]
, x] /; FreeQ[{a, b, c, d, f, A, C}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx &=\frac {\int \frac {1}{\sqrt {a+c x^2}} \, dx}{f}+\frac {\int \frac {-d-e x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{f}+\frac {\left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{f \sqrt {e^2-4 d f}}-\frac {\left (-2 d f+e \left (e+\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{f \sqrt {e^2-4 d f}}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f}-\frac {\left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{f \sqrt {e^2-4 d f}}+\frac {\left (-2 d f+e \left (e+\sqrt {e^2-4 d f}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{f \sqrt {e^2-4 d f}}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f}-\frac {\left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}-\frac {\left (2 d f-e \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.70, size = 334, normalized size = 0.97 \begin {gather*} \frac {\frac {\sqrt {2} \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right ) \tanh ^{-1}\left (\frac {2 a f+c x \left (\sqrt {e^2-4 d f}-e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\sqrt {2} \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c}}}{2 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

((2*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/Sqrt[c] + (Sqrt[2]*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a
*f + c*(-e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])]
)/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + (Sqrt[2]*(e^2 - 2*d*f + e*Sqrt[e
^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d
*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]))/(2*f)

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.43, size = 229, normalized size = 0.67 \begin {gather*} \frac {\text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e+a^2 f\&,\frac {\text {$\#$1}^2 (-e) \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} \sqrt {c} d \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+a e \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )}{2 \text {$\#$1}^3 f-3 \text {$\#$1}^2 \sqrt {c} e-2 \text {$\#$1} a f+4 \text {$\#$1} c d+a \sqrt {c} e}\&\right ]}{f}-\frac {\log \left (\sqrt {a+c x^2}-\sqrt {c} x\right )}{\sqrt {c} f} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^2/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-(Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]]/(Sqrt[c]*f)) + RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^
2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (a*e*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + 2*Sqrt[c]*d*Log[-(Sqrt[c]*x)
 + Sqrt[a + c*x^2] - #1]*#1 - e*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f
*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ]/f

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Eval
uation time: 6.03Error index.cc index_gcd Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.02, size = 1796, normalized size = 5.22

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x)

[Out]

1/f*ln(c^(1/2)*x+(c*x^2+a)^(1/2))/c^(1/2)+1/2/f^2*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)
^(1/2)*ln((-(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1
/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^
(1/2))/f)^2*c-4*(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e
^2)^(1/2)*c*e)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*e-1/(-4*d*f+e^2)^(1/2)/f*2^(1/2)/((2*a*f^2-2*c*d*
f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln((-(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2
*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f
^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/
f+2*(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*d+1/2/(-4*d*f
+e^2)^(1/2)/f^2*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln((-(e+(-4*d*f+e^2)^(1/2))
*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2
-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*(e+(-4*d*f+e^2)^(1
/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x+1/2*
(e+(-4*d*f+e^2)^(1/2))/f))*e^2+1/2/f^2*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln((
-(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f
^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)
^2*c-4*(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2
)*c*e)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*e+1/(-4*d*f+e^2)^(1/2)/f*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2
-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln((-(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2
-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1
/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*
(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*d-1/2/(-4*d*f+e^
2)^(1/2)/f^2*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln((-(e-(-4*d*f+e^2)^(1/2))*(x
-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2
*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*(e-(-4*d*f+e^2)^(1/
2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x-1/2*
(-e+(-4*d*f+e^2)^(1/2))/f))*e^2

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` f
or more details)Is 4*d*f-e^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2}{\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)

[Out]

int(x^2/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(x**2/(sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________